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Abstract—Moonstone is a new plugin for Eclipse that supports
developers in understanding exception flow and in writing excep-
tion handlers in Java. Understanding exception control flow is
paramount for writing robust exception handlers, a task many de-
velopers struggle with. To help with this understanding, we present
two new kinds of information: ghost comments, which are transient
overlays that reveal potential sources of exceptions directly in
code, and annotated highlights of skipped code and associated
handlers. To help developers write better handlers, Moonstone
additionally provides project-specific recommendations, detects
common bad practices, such as empty or inadequate handlers,
and provides automatic resolutions, introducing programmers to
advanced Java exception handling features, such as try-with-
resources. We present findings from two formative studies that
informed the design of Moonstone. We then show with a user
study that Moonstone improves users’ understanding in certain
areas and enables developers to amend exception handling code
more quickly and correctly.

I. Introduction
Exceptions are a common error-handling language mecha-

nism seen by many as an important cornerstone of building
robust systems [1]. When software encounters failures, appropri-
ate exception handlers enable the program to recover gracefully
or terminate safely. However, an abundance of evidence from
prior studies has shown that poor exception handling practices
are extremely prevalent [2]–[4].

Why is the exception mechanism so susceptible to misuse?
People have blamed developers [5], [6] and poor usability of
language mechanisms [7], [8]. For instance, developers do not
consistently document exception conditions, leading to con-
fusion and bugs when other developers interface with their
code [9]. From the language perspective, Java is one of few that
support checked exceptions, whose propagation is constrained
by rules checked by the compiler and which must be declared
in a method’s signature. This feature has been claimed to lead
to difficulties in maintainability [10]. However, exceptions in
general are a language feature across many modern languages.
Exceptions may be universally problematic in that they introduce
additional control flow that is largely hidden and can make

This work was supported by a fellowship within the FITweltweit program of
the German Academic Exchange Service (DAAD) and the National Science
Foundation, Grant. No. CNS-1423054. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect those of the sponsors.

Fig. 1. Overview of Moonstone’s features.

it difficult to assess the behavior of the software system [1].
While novices particularly struggle with exception handling
mechanisms [11], analysis of open-source projects has shown
that bad exception handling practices are common across all
levels of developer expertise [12].

One powerful approach to address problems with both devel-
oper practices and language design has been tool support. Some
prior research has designed tools to help with exceptions by
allowing developers to visualize [13], [14] or set constraints on
exceptions [15], [16] at a high level across their entire software
project. These existing visualizations and constraint systems
focus on helping fix design problems, but do not prevent devel-
opers from writing poor try or catch blocks in the first place.
Many common problems with exceptions have been reported at
the level of the code, such as catching exceptions too broadly
or catch blocks that are simply empty [4]. Tool support is
needed to help developers as they encounter exceptions in the
code and make decisions about how to deal with them.

Given the well-documented struggles that novice and expert
developers alike face with exceptions, tool support must more
carefully consider the workflow of human developers. While
prior research has mined software repositories and found pat-
terns of exception handling use and misuse, here we take this
data on what problems occur and interview developers to better
understand why problems occur with exceptions. Our goal is to
take a pragmatic and human-centered approach to these issues.
We explore tool support to enable developers to solve exception
handling tasks more quickly, write exception handling code that978-1-5386-0443-4/17/$31.00 ©2017 IEEE



avoids poor practices and adheres to the project’s exception
handling policy, and to further the understanding of the Java
exception handling mechanism and control flow.

We performed two initial qualitative studies with developers,
first an interview study, followed by a survey which elicited
responses from over 100 developers. Using our qualitative
findings and issues highlighted by prior work, we designed
and implemented Moonstone, which stands for “Making
Object Oriented Novel Software Tools Optimized for Noting
Exceptions” (see Fig. 1). Moonstone is a plugin extension to
the Eclipse1 Java integrated development environment (IDE)
that is designed to support the programmer in both under-
standing exception control flow and in writing and maintaining
exception handling code.

Moonstone addresses two high-level problems with its six
main features. The first problem is understanding control flow in
the face of exceptions and how control flow relates to exception
handlers. Although try and catch tokens visibly mark the
code that handles an exception, there is no visible information
for a programmer to tell what statements in the try block
can potentially throw an exception, and which code would be
skipped and which executed when an exception happens. We
found this lack of visibility caused problems for programmers
understanding what the exceptional situation was, and it also cre-
ated ambiguity about how to appropriately handle the exception.
To help with this problem, Moonstone provides two visualiza-
tions of intra-method control flow. To reveal potential sources of
exceptions directly in the code, we provide transient overlays we
call ghost comments that convey the exception information. Also,
programmers can trigger annotated code highlighting of the
consequently skipped lines of code and associated handling con-
structs by hovering over the ghost comment or the method call
itself. This makes more accessible the information commonly
needed when trying to understand exception handling code.

The second problem is that programmers tend to write poor
quality exception handlers. To help users learn about and avoid
bad exception handling practices, we implemented a set of
static analyses for common problems and provide the user
with detailed explanations of detected bad practices as well as
automated fixes. We also added a lightweight recommendation
engine that supports users when writing new exception han-
dlers, and eases adhering to project-specific implicit exception
handling policies.

We evaluated the effectiveness of these features with a user
study comparing the performance of users using the standard
version of Eclipse to users using Eclipse with the Moonstone
plugin. Users in the experimental condition were able to com-
plete the tasks on revising existing as well as writing new
exception handling code quickly and accurately, whereas users
in the control were both slower and scored lower.
The contributions described in this paper are:
• Two formative studies about developer behavior that
showed that developers have a tendency to make use

1https://eclipse.org/ide/

of blanket exception handlers and struggle to determine
sources of exceptions in code;

• New visualizations and interaction techniques that sup-
port understanding of local control flow and authoring of
higher quality exception handlers along with a user study
confirming their usability.

II. Related Work
A. Support for Understanding Exception Control Flow

Several prior tools have tried to help developers better under-
stand exception handling. These tools typically focus on depict-
ing control flow of exceptions across an entire program. For
example, Chang et al.’s interactive tree menu allows navigating
from the method throwing an exception to its catch sites [17].
Robillard and Murphy’s static analysis tool, Jex, creates an
abstract representation of the code that only shows sources of
exceptions [13]. This still leaves it up to the user to determine
the exception flow and transfer gained insights back to the actual
source code. Shah et al. presented Enhance, a tool to provide
visualizations about throw-catch pairs across a project in the
user’s IDE [14]. Both Jex and Enhance visualize exception con-
trol flow graphs [1] and allow developers to investigate overall
exception flow and identify irregularities in exception handling.
However, this will typically result in a large number of visualized
flows that need to be considered and can therefore lead to over-
whelming or confusing graphical representations. These prior
tools also notably lacked any controlled studies with developers.
In contrast, our approach does not rely on graph visualizations.
Instead, we insert information about the local exception flow
and about the affected code directly in the source code.

Prior work has found that organizations tend to not pay atten-
tion to exception handling, which creates a fertile ground for
missing subtle details such as properly closing resources [3]. In
an experiment on paper, Maxion found that simply by focusing
developers’ attention on error handling, they considered more
details of the error handling control flow [18]. Motivated by these
findings, our goal in Moonstone is to provide context-sensitive
information directly in the developer’s view of the source code.
We focus on just-in-time support that will guide developers dur-
ing code writing and maintenance tasks, rather than relying on
external visualizations or tools a developer might consult later.
A few tools have approached exceptions as a specification

and verification problem [15], [16]. These allow a developer to
express exception handling policies through annotations, such
as putting constraints on which exceptions can be thrown by a
given class [16]. This prevents certain problems by disallowing
overly general exceptions from being thrown at a method, class,
or package’s interface. Again, our focus in Moonstone is
to provide local-level support to developers writing, reading,
and maintaining exceptions rather than working at the software
architecture level.

B. Support for Writing Exception Handling Code
Professional developers can use of a broad range of program

analysis tools that aim to detect software defects, including
some issues with exception handling code. While tools like

https://eclipse.org/ide/


FindBugs [19] do detect some exception handling issues, they
do not always provide fixes, and they produce explanations that
assume the developer understands the problem. Moonstone
provides background information supporting the user in gaining
a better understanding of the problems and for making an
informed choice about how to proceed. We also provide context-
sensitive automatic resolutions to introduce programmers to
idiomatic solutions they may not be aware of.
Recently, recommendation systems to suggest adequate ex-

ception handlers from a large corpus using machine learning
techniques have been demonstrated [20]. However, due to the
computational complexity that the training requires, they are
currently limited to common libraries for which the system can
be trained in advance. Therefore, they cannot practically be
employed for project-specific recommendations. Other systems
suggest examples that are structurally similar to the referenced
code based on the assumption that structural similarity and
relevance are correlated [21]. A limitation of this work is that
the authors pulled recommendations from only one source:
projects under the Eclipse foundation, which are likely to have
their own implicit exception handling policy. The authors do
not demonstrate that these match well to the policies of any
other software project. Furthermore, they detect and purposely
exclude exception handlers that contain “bad practices” from
the recommendations. However, our studies with developers
suggest that, at least in some cases, these exception handlers, for
example ones that contain only logging, are what is intended.
Logging is very often used to provide key information for
unrecoverable exceptions. In Moonstone, we leverage the
statistical local similarity of exception handlers [4] instead of
the structure of the surrounding code as basis for our light-
weight recommendation system, which allows us to provide
support for local, implicit exception policies.

III. Background
In programming, an exception is a term for an “exceptional

event.” We make the common distinction between contingencies,
which are routine failures the programmer should anticipate
and be prepared for, versus faults, which cover all other failures
that the programmer cannot anticipate or are highly improba-
ble [22]. Examples of contingencies are a missing file or an
unreachable server, while faults are typically programmer errors
or unexpected failures of a system outside of the control of the
program itself.

Java uses the conventional try-catch-finally mechanism.
When an exception is thrown, the runtime interrupts the normal
program control flow, and unwinds the call stack until a catch
block is found that can handle (deal with) that exception, exe-
cuting all finally blocks passed through during the search.
As shown in Fig. 2, Java includes different exception base

classes that determine whether an exception is checked and
thereby subject to additional constraints in the type system.
Thrown checked exceptions must be declared in the signature
of a method or be handled by a catch handler. While there
are some people that advocate avoiding these stronger require-
ments entirely [8], contingencies are conventionally expected

java.lang.Object

Throwable CHECKED

all checked Exceptions reserved for system-level errors, 
eg. IOExceptioneg. OutOfMemoryError

Exception CHECKEDError UNCHECKED

RuntimeException UNCHECKED

all runtime exceptions eg. NullPointerExceptions

Fig. 2. Taxnonomy of exception base classes in Java.

to be modeled as exceptions derived from the Exception
class, so that the type system ensures that callers provide a
corresponding handler. In contrast, the Error class is reserved
for severe system failures, and other faults are expressed as
RuntimeException. The latter commonly occur as a result
of unexpected bugs such as a NullPointerException.

A consequence of exceptions is that, even if programmers do
not think an exception is likely to be thrown, they must ensure
resources are cleaned up in case an exception does happen [23].
Otherwise, stale resources can lead to resource starvation, since
there are no guarantees that Java’s garbage collector will collect
involved objects and release underlying resources. Starting
from version 7, Java offers a language construct to address
this common scenario. The try-with-resources statement
introduces scoped exception-safe resource management for ob-
jects implementing the AutoCloseable interface. Java deter-
ministically invokes the close() method of objects managed
in this manner when their declaring scope is exited, similar
to the “Resource Acquisition Is Initialization” idiom seen in
languages like C++, Ada, or Rust. This absolves programmers of
writing explicit exception handling code in the form of correct
finally handlers, while also covering difficult edge cases
such as exceptions thrown during cleanup.

IV. Formative Investigation
We conducted two qualitative studies with professional de-

velopers to better understand why bad practices occur in their
code base, and how developers approached exceptions. First,
we interviewed 5 software developers (2 female, 3 male). Prior
work suggests that developers in their first few years have more
troubles using exceptions than seasoned developers [24]. In
order to capture a greater variety of difficulties developers face,
we therefore chose to examine three “novice” developers with
only 1 to 2 years of professional development experience as well
as two senior developers with at least 8 years of professional
experience. All had at least 5 years of general programming
experience. While we do not claim that this small sample
is representative of all programmers, these interviews were
revealing and helped to guide our design of a broader survey.

A. Interview
Interviews lasted up to an hour. Participants were not com-

pensated for their time. Following basic demographic questions,
the interviewer asked the participant to freely talk about their
experience with exception handling. Next, participants were
asked structured questions about how they learned about ex-
ception handling. Then, the experimenter gave each participant
three examples of exception handling code on paper. The first



had a blank catch block, which participants were asked to fill
in. The second and third were full examples that included bad
exception practices, such as throwing Throwable, which is
generally considered too general of a class. Participants were
asked to review these two, and were then asked to comment on
any bad practices they noticed (if they did not mention them
on their own). In all three tasks, the participants were asked to
think-aloud to reveal their thought processes.

The results show that, above all, the primary concern of all
participants was logging. Many participants talked about excep-
tions occurring as primary signs of a bug. Participants discussed
frustrations where another developer had left an insufficient
log message or had thrown too general of an exception, like
Exception, leaving no clues about the nature of the problem.
Participants also discussed problems in the debugging process
in trying to find the place in the code base that originally threw
the exception. Often this required searching through each line
in a try block to figure out which one had thrown the error:

“Usually, I like to try to have try blocks be as small as possible,
just to limit the number of catches you have to have, and limit
the amount of searching you have to do before you can figure
out which line actually caused the exception to be caught.” – P1

Contrary to findings by Shah et al. [24], the three novice
developers in our interviews did not express an “ignore for
now” approach to exception handling. Rather, their attitude
towards exception handling depended very much on the culture
of their development team and company. Some participants had
experienced intensive code reviews of their code, even on their
log messages in exception handlers. One participant admitted
to frequently catching and throwing Exception, even though
they knew it was a bad practice, because the rest of the team’s
codebase followed these kinds of bad practices anyway.

B. Survey
We next designed an online survey based on questions from

the interviews. The survey was sent out via email lists and
social media accounts of the investigators. Participants were
required to have some professional experience as a software
developer, and were offered optional entry into a raffle for a
$25 gift card for their participation.
A total of 101 developers responded to the survey, with an

average of 13.9 years of professional development experience
(sd = 12.6). Overall, developers were confident about exception
handling, with 92% of participants responding that they felt they
knew exception handling “Reasonably well” (51%) or “Very
well” (41%). Survey participants had learned exception handling
from a highly diverse set of sources. This corresponds with
previous findings [22] that exception handling is not a topic well
covered by formal courses, so people need to learn it elsewhere.
Despite confidence with exceptions, survey participants re-

ported following poor practices at times. 62% of partici-
pants reported catching general exceptions like Exception or
Throwable at least “Sometimes.” Participants did not typically
leave exception handlers empty, with 45% reporting that they
“Never” do this, 31% reporting “Rarely,” 17% “Sometimes,”
4% “Often,” and 3% “Very Often.” If a participant answered

more than “Never,” we asked in a free response question for
reasons or circumstances when they do this. Responses fell into
two general themes: participants left empty catch blocks when
they were writing temporary or prototype code. Participants also
said they left catch blocks empty when they simply wanted
to silence any exceptions that occurred at that program point.

To understand exception handling while reading code, 43%
of participants reported that they found it at least “Somewhat
Difficult” to determine which statement in a try block could
potentially throw an exception. 76% reported at least “Some-
times” looking up the documentation of individual method calls
to figure out which exceptions they could throw. 71% reported
at least “Sometimes” trying to purposely minimize the size of
a try block for this reason.

V. Tool Design
Moonstone is built using the plugin interface of Eclipse,

which is a popular development environment for Java [25].
After designing and building a prototype of the tool based on
our qualitative findings and prior work, we additionally tested
the prototype with five developers to discover usability flaws
and iterated based on that feedback. Then, we performed an
extensive user study of the final design (see section VI).

A. Understanding control flow
Exceptions can reroute normal control flow in a way that

developers find difficult to understand. While tokens like try,
catch, finally, and throw provide important information,
the control flow in the end depends on which methods throw
which exceptions and what type hierarchy these exceptions have.
As found in our survey and interviews, programmers are having
difficulties with gathering this information.

Fig. 3. Ghost comment (in gray) on call to server.openConnection.

First, to help programmers identify potential exception
sources, we augment the source code with the exception signa-
tures of methods. We overlay these next to method invocations
in form of what we call ghost comments. As seen in Fig. 3, we
use the same font and size as the rest of the code to display a
syntactically valid Java line comment at the end of the line of
the call. Previous work found similar comment beacons to be
supportive of program understanding and easy to process for
experienced programmers [26]. To reduce visual clutter, we only
display these ghost comments context-sensitively for method
calls inside a try block, while the caret resides inside the
relevant try, catch or finally blocks. In addition, the user
can choose to persist an annotation, turning the ghost comment
into an actual comment in the source file. After feedback to our
initial prototype we also implemented ghost comments for the
implicit calls to the close() method of a resource managed
with a try-with-resources statement.

In addition, as shown in Fig. 4, we provide precise informa-
tion about the resulting exception flow, which appears when



Fig. 4. Visualization of skipped code and associated handlers after hovering
over greeting.stringForCustomer call.

users hover over a ghost comment or over a call that might throw
an exception. This includes apricot colored code highlights of
lines skipped due to an exception as well as blue code highlights
of associated local exception flow constructs. Moonstone is
capable of showing multiple exception flows originating from
a single method call, for instance if a method declares multiple
exception types. In this case users can select the flow they want
to visualize. Our approach uses static analyses to determine all
possible control flows due to checked exceptions. This includes
exceptions on method calls whose return values are used as argu-
ments as seen in Fig. 4, exceptions on implicit calls to close(),
as well as exceptions in finally handlers. If the responsible
exception handler cannot be statically determined, we narrow
the resulting flow to the different paths possible at runtime.

Also shown in Fig. 4 is our custom hover popup window. It
extends the standard JavaDoc information Eclipse provides with
a color-coded legend and a step-by-step listing of the control
flow through associated handling constructs corresponding to
the blue highlights, such as finally handlers and catch
handlers related to the user-selected throw.

B. Educating about bad exception handling practices

To promote a better understanding of exception handling
problems, we extend upon Eclipse error and warning features.
We introduce a popup window (see Fig. 5) that provides an
in-depth explanation of the problems encountered and context-
sensitive automated quick fixes to help users make use of appro-
priate Java features and improve their exception handling code.

Fig. 5. Explanation of the bad practice of declaring base class Exception on
method with suggestions for context-sensitive resolution shown side-by-side.

The implementation of this functionality uses a set of
seven static analysis passes. We flag overly generic catch
handlers that assume responsibility for all exceptions deriving
from one of the exception base classes Throwable, Error,
RuntimeException, or Exception, if the type checker only
requires a subset to be handled. This addresses the common
theme found in our investigation of blanket catch handlers
without differentiation of the failure scenario. While dealing
with all checked exceptions in a uniform way can be reasonable

for some code, an Exception or Throwable catch handler
also responds to all RuntimeExceptions (see Java’s excep-
tion hierarchy in Fig. 2), including subtle failures like arithmetic
overflows or programmer errors which often require special care
to recover from appropriately. An exception handler written
to handle contingencies might thereby also inappropriately
handle these failures. Analogously, we report overly generic
exception declarations on methods, when a narrower exception
specification can be provided to the caller. First, an overly
generic exception specification leaves callers no choice but to
implement a blanket catch handler additionally contributing
to the problem of inadvertently handled unchecked exceptions.
Second, as discussed in the previous section, accurate informa-
tion about possible exceptions plays an important role in writing
exception handling code. Generic exception specifications do
not provide this. Further analyses detect throws of base class
exceptions, empty catch handlers, as well as the common
mistake of failing to provide the underlying exception as the
cause when throwing a new exception, resulting in loss of the
stack trace up to that point.
Lastly, we flag failures to properly clean up resources that

implement the AutoCloseable interface. While this problem
has been addressed in tooling before, many are unfamiliar with
the semantics of newer Java features such as the try-with-
resources statement and are therefore reluctant to make use
of it or are prone to misuse it. Our detailed explanation in
combination with the ghost comment informing the user about
the implicit close() resource cleanup call should ease the
transition to using this language feature and thereby to writing
more resilient resource cleanup code.

For our quick fix feature, we employ transformations of the
program’s abstract syntax tree (AST) to reliably perform the
change the user selected. This ensures broad compatibility
with real world source code. After feedback about our initial
prototype, we also implemented functionality to help users with
following how their code was affected. We use information
available from our AST transform to steer attention to newly
introduced constructs by changing the text selection to the
corresponding code in the source code editor.

C. Supporting maintenance
Prior research indicates that much of exception handling code

is rarely tested [3]. This puts additional strain on maintain-
ing correct exception handling in the code. Using explicitly
specified exception policies to guide the recommendations has
been explored [15]. However, establishing consistent exception
policies can be challenging and may require refactoring part of
the software system, which renders this approach impractical
for smaller projects or less experienced developers. Based on
the previous work that reported that exception handlers have a
tendency to be similar to other handlers in their vicinity [4],
we implemented functionality to support adherence to local,
implicit exception handling policies.

We provide the programmer with examples of other exception
handlers from the current project that deal with a certain excep-
tion type as well as examples of typical finally handlers. This



allows the user to get an overview of existing exception handling
code and helps to discover required recovery procedures as well
as project-specific conventions, such as the employed logging
scheme, or the granularity of errors reported. Available matching
examples are shown in an additional pane in the user’s IDE
(see bottom of Fig. 1), which automatically updates as the user
moves the text cursor in the source file. To lower the burden
of implementing appropriate handlers rather than leaving the
catch block empty, we provide functionality to copy an existing
handler into the system’s clipboard to make it easy to paste it as
the basis for a new implementation. We gather the information
needed for these recommendations by indexing all exception
handling constructs in the current project, when the user first
opens it in the IDE. When changes to the code are detected,
the index is updated accordingly. We use a code transformation
that abstracts non-structural details, such as variable names and
string constants, to group similar handlers together in order to
eliminate recommendations without significant differences in
their control flow or functionality.
Our quick fixes also play an important role in maintaining

the software system by helping developers avoid introducing
new bad practices. To that end, our recommendation system is
tightly integrated with our poor practice detection. For instance,
we enable users to jump directly to a matching recommendation
to resolve an empty catch handler. We categorize the indexed
handlers to allow users to quickly jump to examples that are
appropriate for the current situation, such as handlers involving
logging code or those that do not.

VI. Evaluation
To evaluate the usability and effectiveness of Moonstone,

we conducted a laboratory study of experienced Java program-
mers working on a range of coding tasks. We used the neon.1
version of the Eclipse Java IDE. The control group used the
default configuration, whereas the experimental group used
the same version of Eclipse extended with our Moonstone
plugin. The effects of our plugin were measured using a
between-subjects study design, where participants were equally
distributed among the two conditions.

A. Participants
Most of the participants were students (85%) recruited from

the University of Pittsburgh and Carnegie Mellon University
based on their software development experience. We accepted
participants into the study that either self-identified as having
more than three years of Java experience or had experience
working with large Java software projects outside of a university.
Additionally, we required experience in using an integrated de-
velopment environment, not limited to Eclipse. Each participant
was paid $20.

We chose to exclude one participant of the control group
whose knowledge of the Java exception handling mechanism
was not in line with the self-identified experience and who
seemed to not meet the requirements. Thus, our study con-
sisted of 14 participants (8 male and 6 female), eight of whom
were graduate students. All but one participant had experience

working in software development with seniorities ranging from
1
2 to 9 years. Overall, they reported, on average, 3.2 years of
professional experience (sd = 2.4) and 4.8 years of experience
in Java (sd = 2.4).

B. Tasks
To increase the external validity of the tasks, we collected a

series of bug reports, commits of bad practices, and commits fix-
ing bad practices in a number of open source projects. Based on
common problems we encountered, we created a set of 13 tasks
which used simplified versions of those situations or similar
problems, covering the different aspects our plugin addresses:

• 2 tasks about identifying problems and bad practices in
the given piece of code;

• 5 tasks about fixing incorrect exception handling code
and poor practices, covering failures to correctly cleanup
resources on all execution paths, empty catch handlers,
usage of overly generic exception types, and failures to
preserve the original exception as the cause when throwing
a new exception in catch handlers;

• 4 tasks about understanding the control flow in the face of
exceptions, including identifying exception sources as well
as inconsistencies between code intent and given exception
handlers and comprehension of finally semantics;

• 2 tasks about implementing new catch handlers that are
in line with how other exception handlers in the same
project handle problems.

All participants did all the tasks in the same order. Dependent
measures were time to completion and success. To provide a
more nuanced evaluation of success, we devised a grading rubric
that assigns 2 to 7 points to each task based on its complexity
and clear-cut features, such as the absence of compiler errors or
achieved program semantics. We imposed time limits per task
depending on the section they were in to keep participants from
getting caught up in one of the tasks. For the identifying and
understanding tasks, the time limit for each task was five min-
utes, for the fixing tasks six minutes, and for the implementation
tasks eight minutes. If a participant was still working on a task
when the time limit was reached, we evaluated their progress up
until that point, but excluded their time from further analysis.

C. Procedure
The study had a total length of 90 minutes. At the beginning,

we provided participants with short introduction of similar
length for the version of Eclipse they were assigned to use. Par-
ticipants were then encouraged to try out the explained features
themselves and were given appropriate help when they had
problems triggering features of Moonstone or Eclipse, such as
hovering over elements with the touch pad of the provided laptop
computer or specifics of the macOS operating system used for
this study. Information covered in the introduction included
Eclipse’s features to navigate around code, such as “Open
Declaration,” as well as the JavaDoc text hovers to discover
exceptions declared by a method (for the control condition),
and the ghost comments, places where our extended text hover
can be triggered, as well as an explanation how to apply quick



fixes (for the experimental condition). The participants then
proceeded to work on the first two sections of our user study.

Before we moved to the understanding and implementation
sections, we briefed participants on another set of features to
prepare them for the remaining tasks. In the control condition,
participants were shown Eclipse’s project explorer which pro-
vides an overview of the project structure and semantic outlines
of declared Java elements as well as the search functionality
to either limit searches to certain types of identifiers or initiate
a plain text search. Participants in the experimental condition
were given an explanation of the information Moonstone’s
text hovers provide as well as the recommendation feature. After
completing the tasks, the participants were asked to fill out a
survey about the version of Eclipse they used.

D. Results

There were 7 participants in each condition who worked
on all tasks. As Fig. 6 shows, participants using Moonstone
finished on average faster in each group of tasks, and overall.
In total, 16.5% of tasks in the control condition as well as 2.2%
in the experimental condition were not finished within the time
limit and were excluded from Fig. 6. The values on each bar in
Fig. 6–8 denote the number of data points taken into account.
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Fig. 6. Average duration per finished task in section in tasks analyzed.

A Mann–Whitney U test confirms that the increase in speed is
significant for the tasks that involve fixing problems (U = 182.5,
p < 0.01) or implementing new handlers (U = 13.0, p < 0.01).
The difference in the identify tasks was not significant, but the
high difference overall (−22%) suggests that statistical signifi-
cance might have been achieved with more participants. There
did not seem to be any difference in speed for understand tasks.

As Fig. 7 shows, participants in the experimental treatment
achieved higher scores on fixing problems (U = 28.0, p < 0.01)
and implementing new exception handlers (U = 28.5, p < 0.05).
The differences in identified problems and scores for under-
standing control flow show similar tendencies, but were not
significant, what we similarly attribute to limited number of
people in this user study.
For further analysis, we also assigned the individual issues

participants needed to address into the following categories:
syntax and logic errors, making use of specific exception types
when catching or throwing exceptions instead of one of the
exception base classes, correctly cleaning up resources, and
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knowledge of control flow associated with finally constructs
as well as other non-finally related exception control flow,
see Fig. 8. Based on this classification, Moonstone was most
helpful for tasks involving handling of resources (U = 44.0,
p < 0.01) and understanding how the finally handler inter-
acts with exception control flow (U = 38.5, p < 0.05). Similarly,
it also encouraged developers to use significantly more specific
exception types in their code (U = 44.0, p < 0.01).

In the survey at the end of the study, Moonstone users em-
phasized the value of extra information provided by the plugin,
such as the ghost comments and code highlights, as well as the
recommendation feature and the support Moonstone provides
to ensure consistent exception handling within a project. When
asked, all participants in the experimental condition showed
interest in using such a tool. Users gaveMoonstone an average
rating of 6.1 for ease of learning and 6.3 for overall likability
on a 7-point Likert scale compared to an ease of learning rating
of 5.1 and overall likability of 5.6 in the control condition.

VII. Discussion

Our results show that users found Moonstone easy to use
and were satisfied with the quality of information provided.
Moonstone helped programmers to complete exception han-
dling coding tasks significantly faster, and to fix poor exception
handling practices and problems and to correctly implement
new project-specific exception handlers to a significantly higher
degree. Further, developers exhibited an improved understanding
of exception control flow in the face of finally handlers.



A. Qualitative Observations
Despite the instructions about Moonstone, some partici-

pants showed hesitation to use the tool at first. Several were
reluctant to use the quick fixes, but still consulted the plugin
for information about the type of problem diagnosed. One
participant cited his distaste for auto-generated code as the
motivation. Nevertheless, overall, participants performed consid-
erably better using Moonstone for the fixing tasks, suggesting
the information in the quick fixes were a benefit even to users
who did not apply them.

In the understand section, we found that a few partici-
pants from both conditions experienced difficulties triggering
Eclipse’s text hover functionality which Moonstone builds
upon. Affected users would hover for a short time over the target
before initiating a click on the target, which caused the hover to
be dismissed before the information could be reviewed. Eclipse
allows for configuring the time until the hovers are triggered sug-
gesting a shorter interval might improve usability. Additionally,
typing on the keyboard did not dismiss Moonstone’s hovers
if the mouse was still hovering over it, which was unexpected
to some users. This seems to have affected the results in the
understanding section for the experimental condition.

Participants in the control condition faired especially poorly
in the implement tasks. Even though Eclipse’s project explorer
and search functionality were highlighted, participants struggled
to form a plan about where to find other exception handlers in
the project and thus spent a lot of time reviewing the source
files and declarations of the elements referenced.

B. Limitations
The user study was performed with a small number of par-

ticipants most of whom were university students. Even though
some of them reported considerable experience in professional
software development, they may not be representative of other
Java developers. Further, we did not verify their level of profi-
ciency with an assessment. A larger user study might therefore
be appropriate to explore applicability to a broader audience.
Similarly, while the tasks are based on selected common excep-
tion handling problems, the tasks were synthetically designed for
this laboratory study. Therefore, they may not be representative
of more complex real-world code.

Moonstone’s highlighting of control flow provides robust,
precise information, but relies on static analysis to determine
possible flows. If programmers use exception handlers to differ-
entiate between subtypes of a declared checked exception, the
actual exception flow may not be determinable until runtime.
Moonstone displays all possible concrete exception types
resulting in different flows in that case, but we feel that an
appropriate mechanism to rank potential flows according to their
likelihood of occurrence is needed to be an effective tool for
programmers when this happens, since it can display exception
flows that are impossible with the current implementation.
Furthermore, since Moonstone’s recommendations are

sourced from the current project’s files, they are of limited
utility when starting a new project or when existing handlers
are of low quality. However, Moonstone could be extended

to allow developers to choose a previous project of a similar
domain or a repository of best practice handlers to bootstrap
or augment the recommendations based on the current project.

VIII. Future Work

Moonstone could be further extended in numerous ways,
such as support for other poor practices, more complex analyses
of exception propagation, as well as broadening the analyses
of too generic types. This might provide more comprehensive
support for software developers resulting in further improve-
ments in the quality of exception handling code.

Additionally, a global analysis, such as the one employed by
Jex [13], could be used to expand its functionality to unchecked
exceptions, whose propagation is not recorded in the type system.
Most of the presented ideas can therefore be adapted for other
IDEs and imperative languages, even if the target environment
does not have checked exceptions.

To measure and improve upon the benefit to novice software
developers, a longitudinal study of Moonstone in a university
class setting over the course of a semester would be a good
follow-up for future work.
Although powerful, tool support, as explored in this paper,

will always be constrained by the existing semantics of the
language. Another approach can be changes to the programming
language itself. While participants exhibited a bias for fine-
grained exception handling according to our findings, others
have proposed separating exception handling responsibilities
further from regular software developers [6]. To that end, our
current work is exploring a combination of language changes
and human-centric tool support to establish fault barriers [22],
which are exception handlers that implement worst-case re-
covery, and may be able to provide the exception handling
guarantees that are required to have robust software systems.

IX. Conclusion

In this paper, we introducedMoonstone,which supports pro-
grammers in understanding and writing exception handling code.
Our formative investigation revealed that developers spend a fair
amount of time searching for potential sources of exceptions,
up to the point where they consciously try to minimize try
blocks to limit the search space, and many developers make use
of blanket catch handlers and/or leave catch handlers empty.
We designed Moonstone based on the data we collected and
iterated on our prototype based on user feedback from software
developers, resulting in a system that helped users understand
and better write exception handling code.

Dealing with exception handling code continues to be a time-
consuming and mentally challenging task. Moonstone points
the way for how developer productivity can be improved with
support for basic problems programmers face, thereby freeing
mental capacity for higher level tasks.

“It allows me to understand and locate problems faster,
optimizing my programming performance”

– participant in the experimental condition
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